Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Molecules ; 27(14)2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1928613

ABSTRACT

Medicinal plants have considerable potential as antimicrobial agents due to the presence of secondary metabolites. This comprehensive overview aims to summarize the classification, morphology, and ethnobotanical uses of Euphorbia neriifolia L. and its derived phytochemicals with the recent updates on the pharmacological properties against emerging infectious diseases, mainly focusing on bacterial, viral, fungal, and parasitic infections. The data were collected from electronic databases, including Google Scholar, PubMed, Semantic Scholar, ScienceDirect, and SpringerLink by utilizing several keywords like 'Euphorbia neriifolia', 'phytoconstituents', 'traditional uses', 'ethnopharmacological uses', 'infectious diseases', 'molecular mechanisms', 'COVID-19', 'bacterial infection', 'viral infection', etc. The results related to the antimicrobial actions of these plant extracts and their derived phytochemicals were carefully reviewed and summarized. Euphol, monohydroxy triterpene, nerifoliol, taraxerol, ß-amyrin, glut-5-(10)-en-1-one, neriifolione, and cycloartenol are the leading secondary metabolites reported in phytochemical investigations. These chemicals have been shown to possess a wide spectrum of biological functions. Different extracts of E. neriifolia exerted antimicrobial activities against various pathogens to different extents. Moreover, major phytoconstituents present in this plant, such as quercetin, rutin, friedelin, taraxerol, epitaraxerol, taraxeryl acetate, 3ß-friedelanol, 3ß-acetoxy friedelane, 3ß-simiarenol, afzelin, 24-methylene cycloarenol, ingenol triacetate, and ß-amyrin, showed significant antimicrobial activities against various pathogens that are responsible for emerging infectious diseases. This plant and the phytoconstituents, such as flavonoids, monoterpenoids, diterpenoids, triterpenoids, and alkaloids, have been found to have significant antimicrobial properties. The current evidence suggests that they might be used as leads in the development of more effective drugs to treat emerging infectious diseases, including the 2019 coronavirus disease (COVID-19).


Subject(s)
COVID-19 Drug Treatment , Communicable Diseases, Emerging , Euphorbia , Communicable Diseases, Emerging/drug therapy , Ethnobotany , Ethnopharmacology , Humans , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/pharmacology
2.
Drug Discov Today ; 27(4): 1099-1107, 2022 04.
Article in English | MEDLINE | ID: covidwho-1505649

ABSTRACT

The search for effective drugs to treat new and existing diseases is a laborious one requiring a large investment of capital, resources, and time. The coronavirus 2019 (COVID-19) pandemic has been a painful reminder of the lack of development of new antimicrobial agents to treat emerging infectious diseases. Artificial intelligence (AI) and other in silico techniques can drive a more efficient, cost-friendly approach to drug discovery by helping move potential candidates with better clinical tolerance forward in the pipeline. Several research teams have developed successful AI platforms for hit identification, lead generation, and lead optimization. In this review, we investigate the technologies at the forefront of spearheading an AI revolution in drug discovery and pharmaceutical sciences.


Subject(s)
Anti-Infective Agents/therapeutic use , Artificial Intelligence , COVID-19 Drug Treatment , Communicable Diseases, Emerging/drug therapy , Drug Discovery/methods , SARS-CoV-2 , Animals , Humans
4.
Cell ; 184(6): 1604-1620, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1392179

ABSTRACT

Historically, emerging viruses appear constantly and have cost millions of human lives. Currently, climate change and intense globalization have created favorable conditions for viral transmission. Therefore, effective antivirals, especially those targeting the conserved protein in multiple unrelated viruses, such as the compounds targeting RNA-dependent RNA polymerase, are urgently needed to combat more emerging and re-emerging viruses in the future. Here we reviewed the development of antivirals with common targets, including those against the same protein across viruses, or the same viral function, to provide clues for development of antivirals for future epidemics.


Subject(s)
Antiviral Agents/therapeutic use , Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/epidemiology , Molecular Targeted Therapy/methods , Pandemics , Virus Diseases/drug therapy , Virus Diseases/epidemiology , Viruses/enzymology , Animals , Antiviral Agents/pharmacology , Communicable Diseases, Emerging/virology , Humans , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Envelope Proteins/antagonists & inhibitors , Virus Diseases/virology , Virus Internalization/drug effects
5.
Nat Commun ; 12(1): 4396, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1387353

ABSTRACT

Rapid development of antisense therapies can enable on-demand responses to new viral pathogens and make personalized medicine for genetic diseases practical. Antisense phosphorodiamidate morpholino oligomers (PMOs) are promising candidates to fill such a role, but their challenging synthesis limits their widespread application. To rapidly prototype potential PMO drug candidates, we report a fully automated flow-based oligonucleotide synthesizer. Our optimized synthesis platform reduces coupling times by up to 22-fold compared to previously reported methods. We demonstrate the power of our automated technology with the synthesis of milligram quantities of three candidate therapeutic PMO sequences for an unserved class of Duchenne muscular dystrophy (DMD). To further test our platform, we synthesize a PMO that targets the genomic mRNA of SARS-CoV-2 and demonstrate its antiviral effects. This platform could find broad application not only in designing new SARS-CoV-2 and DMD antisense therapeutics, but also for rapid development of PMO candidates to treat new and emerging diseases.


Subject(s)
Chemistry Techniques, Synthetic/instrumentation , Chemistry, Pharmaceutical/instrumentation , High-Throughput Screening Assays/instrumentation , Morpholinos/chemical synthesis , Oligonucleotides, Antisense/chemical synthesis , Animals , COVID-19/virology , Chlorocebus aethiops , Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/microbiology , Disease Models, Animal , High-Throughput Screening Assays/methods , Humans , Morpholinos/pharmacology , Morpholinos/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Precision Medicine/methods , RNA, Messenger/antagonists & inhibitors , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/genetics , Time Factors , Vero Cells , COVID-19 Drug Treatment
6.
Infect Dis Clin North Am ; 35(2): 261-277, 2021 06.
Article in English | MEDLINE | ID: covidwho-1232974

ABSTRACT

Various uncommon fungal pathogens have been increasingly identified as causes of disseminated and invasive fungal disease (IFD) worldwide. Growing recognition and clinical knowledge of these emerging fungal pathogens has occurred through improved molecular diagnostics, nucleic sequence databases, and taxonomic reclassification of medically significant fungi. However, emerging fungal diseases carry significant morbidity and mortality and, due to a paucity of published literature, the collective clinical experience with these fungi is often limited. In this review, we focus on unusual emerging fungal pathogens not extensively covered elsewhere in this issue of Infectious Diseases Clinics of North America.


Subject(s)
Communicable Diseases, Emerging , Invasive Fungal Infections , Mycoses , Opportunistic Infections , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/epidemiology , Fungi , Humans , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/epidemiology , Mycoses/diagnosis , Mycoses/epidemiology , North America , Opportunistic Infections/diagnosis , Opportunistic Infections/drug therapy , Opportunistic Infections/epidemiology
7.
Drug Discov Today ; 26(10): 2367-2376, 2021 10.
Article in English | MEDLINE | ID: covidwho-1237674

ABSTRACT

Effective therapeutics to combat emerging viral infections are an unmet need. Historically, treatments for chronic viral infections with single drugs have not been successful, as exemplified by human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections. Combination therapy for these diseases has led to improved clinical outcomes with dramatic reductions in viral load, morbidity, and mortality. Drug combinations can enhance therapeutic efficacy through additive, and ideally synergistic, effects for emerging and re-emerging viruses, such as influenza, severe acute respiratory syndrome-coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS)-CoV, Ebola, Zika, and SARS-coronavirus 2 (CoV-2). Although novel drug development through traditional pipelines remains a priority, in the interim, effective synergistic drug candidates could be rapidly identified by drug-repurposing screens, facilitating accelerated paths to clinical testing and potential emergency use authorizations.


Subject(s)
Antiviral Agents/therapeutic use , Communicable Diseases, Emerging/drug therapy , Drug Combinations , Drug Therapy, Combination/trends , Virus Diseases/drug therapy , Drug Repositioning , Humans , COVID-19 Drug Treatment
8.
Value Health ; 24(7): 917-924, 2021 07.
Article in English | MEDLINE | ID: covidwho-1233520

ABSTRACT

OBJECTIVES: Throughout the coronavirus disease 2019 pandemic, susceptible-infectious-recovered (SIR) modeling has been the preeminent modeling method to inform policy making worldwide. Nevertheless, the usefulness of such models has been subject to controversy. An evolution in the epidemiological modeling field is urgently needed, beginning with an agreed-upon set of modeling standards for policy recommendations. The objective of this article is to propose a set of modeling standards to support policy decision making. METHODS: We identify and describe 5 broad standards: transparency, heterogeneity, calibration and validation, cost-benefit analysis, and model obsolescence and recalibration. We give methodological recommendations and provide examples in the literature that employ these standards well. We also develop and demonstrate a modeling practices checklist using existing coronavirus disease 2019 literature that can be employed by readers, authors, and reviewers to evaluate and compare policy modeling literature along our formulated standards. RESULTS: We graded 16 articles using our checklist. On average, the articles met 6.81 of our 19 categories (36.7%). No articles contained any cost-benefit analyses and few were adequately transparent. CONCLUSIONS: There is significant room for improvement in modeling pandemic policy. Issues often arise from a lack of transparency, poor modeling assumptions, lack of a system-wide perspective in modeling, and lack of flexibility in the academic system to rapidly iterate modeling as new information becomes available. In anticipation of future challenges, we encourage the modeling community at large to contribute toward the refinement and consensus of a shared set of standards for infectious disease policy modeling.


Subject(s)
Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/prevention & control , Epidemiologic Methods , Cost-Benefit Analysis , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data , Forecasting/methods , Humans , Policy Making , Reference Standards
9.
Pharmacol Ther ; 214: 107613, 2020 10.
Article in English | MEDLINE | ID: covidwho-632413

ABSTRACT

Resveratrol has been widely studied for its therapeutic potential due to its antioxidant, anti-inflammatory and anti-microbial properties. In particular, resveratrol has shown promising antiviral activity against numerous viruses responsible for severe respiratory infections. Amongst these, influenza virus, respiratory syncytial virus and the emerging SARS-cov-2 are known to cause pneumonia, acute respiratory distress syndrome or multi-organ failure, especially, in vulnerable individuals like immunocompromised patients or the elderly, leading to a considerable economic burden worldwide. In this context, resveratrol may have potential value for its anti-inflammatory activity, since most of the severe virus-associated complications are related to the overactivation of the host-immune response, leading to lung damage. Herein, we present an overview of the antiviral activity and potential mechanisms of resveratrol against the respiratory tract viruses considered as a public threat for their rapid transmission and high morbidity and mortality in the general population.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Respiratory Tract Infections/drug therapy , Resveratrol/pharmacology , Resveratrol/therapeutic use , Virus Diseases/drug therapy , Antiviral Agents/pharmacokinetics , Betacoronavirus , COVID-19 , Communicable Diseases, Emerging/drug therapy , Coronavirus Infections/drug therapy , Humans , Influenza, Human/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Tract Infections/virology , Resveratrol/pharmacokinetics , SARS-CoV-2 , Virus Diseases/virology
11.
Emerg Microbes Infect ; 9(1): 1523-1533, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-612922

ABSTRACT

With increasing frequency, humans are facing outbreaks of emerging infectious diseases (EIDs) with the potential to cause significant morbidity and mortality. In the most extreme instances, such outbreaks can become pandemics, as we are now witnessing with COVID-19. According to the World Health Organization, this new disease, caused by the novel coronavirus SARS-CoV-2, has already infected more than 10 million people worldwide and led to 499,913 deaths as of 29 June, 2020. How high these numbers will eventually go depends on many factors, including policies on travel and movement, availability of medical support, and, because there is no vaccine or highly effective treatment, the pace of biomedical research. Other than an approved antiviral drug that can be repurposed, monoclonal antibodies (mAbs) hold the most promise for providing a stopgap measure to lessen the impact of an outbreak while vaccines are in development. Technical advances in mAb identification, combined with the flexibility and clinical experience of mAbs in general, make them ideal candidates for rapid deployment. Furthermore, the development of mAb cocktails can provide a faster route to developing a robust medical intervention than searching for a single, outstanding mAb. In addition, mAbs are well-suited for integration into platform technologies for delivery, in which minimal components need to be changed in order to be redirected against a novel pathogen. In particular, utilizing the manufacturing and logistical benefits of DNA-based platform technologies in order to deliver one or more antiviral mAbs has the potential to revolutionize EID responses.


Subject(s)
Antibodies, Viral/therapeutic use , Antiviral Agents/therapeutic use , Biological Products/therapeutic use , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/genetics , COVID-19 , Communicable Diseases, Emerging/drug therapy , DNA , Drug Discovery , Humans , Mice , Post-Exposure Prophylaxis , Time Factors
12.
Isr Med Assoc J ; 22(6): 335-339, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-607449

ABSTRACT

BACKGROUND: In the absence of definitive anti-viral therapy, there is considerable interest in mitigating against severe inflammatory reactions in coronavirus disease-2019 (COVID-19) pneumonia to improve survival. These reactions are sometimes termed cytokine storm. PDE4 inhibitors (PDE4i) have anti-inflammatory properties with approved indications in inflammatory skin and joint diseases as well as chronic obstructive pulmonary disease (COPD). Furthermore, multiple animal models demonstrate strong anti-inflammatory effects of PDE4i in respiratory models of viral and bacterial infection and also after chemically mediated lung injury. The rationale for PDE4i use in COVID-19 patients comes from the multimodal mechanism of action with cytokine, chemokine, and other key pathway inhibition all achieved with an excellent safety profile. We highlight how PDE4i could be an overlooked treatment from the rheumatologic and respiratory armamentarium, which has potential beneficial immune-modulation for treating severe COVID-19 pneumonia associated with cytokine storms. The proposed use of PDE4i is also supported by age-related immune changes in inflammation severity in PDE4i modifiable pathways in primate coronavirus disease. In conclusion, over-exuberant anti-viral immune responses in older patients with COVID-19 may pose a substantial risk to patient survival and mitigation against such hyper-inflammation with PDE4i, especially with anti-viral agents, is a strategy that need to be pursed, especially in older patients.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Communicable Diseases, Emerging/drug therapy , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Disease Outbreaks , Phosphodiesterase 4 Inhibitors/administration & dosage , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Adult , Age Factors , Aged , Animals , Betacoronavirus , COVID-19 , Communicable Diseases, Emerging/mortality , Coronavirus Infections/diagnosis , Female , Humans , Italy , Male , Middle Aged , Pandemics , Phosphodiesterase 4 Inhibitors/pharmacology , Pneumonia, Viral/diagnosis , Prognosis , Risk Assessment , SARS-CoV-2 , Survival Analysis , Treatment Outcome , United Kingdom
13.
Antimicrob Agents Chemother ; 64(5)2020 04 21.
Article in English | MEDLINE | ID: covidwho-13986

ABSTRACT

Tilorone is a 50-year-old synthetic small-molecule compound with antiviral activity that is proposed to induce interferon after oral administration. This drug is used as a broad-spectrum antiviral in several countries of the Russian Federation. We have recently described activity in vitro and in vivo against the Ebola virus. After a broad screening of additional viruses, we now describe in vitro activity against Chikungunya virus (CHIK) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV).


Subject(s)
Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Communicable Diseases, Emerging/drug therapy , Coronavirus/drug effects , Ebolavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/drug effects , Tilorone/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL